The existence of heteroclinic traveling waves in the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice
Date
2018
Authors
Bak, S. M.
Бак, С. М.
Бак, С. Н.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The article deals with the discrete sine-Gordon equation that describes an infinite system of nonlinearly coupled nonlinear oscillators on a 2D-lattice with the external potential V (r) = K(1-cos r). The main result concerns the existence of heteroclinic travelling waves solutions. Sufficient conditions for the existence of these solutions are obtained by using the critical points method and concentration-compactness principle.
Статтю присвячено дискретному рівнянню синус-Гордона, яке описує нескінченну систему нелінійно зв'язаних нелінійних осцилятори на двовимірній гратці із зовнішнім потенціалом V (r) = K (1-cos r). Основний результат стосується існування розв'язків у вигляді гетероклінічних біжучих хвиль. За допомогою методу критичних точок і принципу концентрованої компактності отримано достатні умови існування таких розв'язків.
Статья посвящена дискретном уравнению синус-Гордона, которое описывает бесконечную систему нелинейно связанных нелинейных осцилляторов на двумерной решетке с внешним потенциалом V (r) = K (1-cos r). Основной результат касается существования решений в виде гетероклиничних бегущих волн. С помощью метода критических точек и принципа концентрированной компактности получено достаточные условия существования таких решений.
Статтю присвячено дискретному рівнянню синус-Гордона, яке описує нескінченну систему нелінійно зв'язаних нелінійних осцилятори на двовимірній гратці із зовнішнім потенціалом V (r) = K (1-cos r). Основний результат стосується існування розв'язків у вигляді гетероклінічних біжучих хвиль. За допомогою методу критичних точок і принципу концентрованої компактності отримано достатні умови існування таких розв'язків.
Статья посвящена дискретном уравнению синус-Гордона, которое описывает бесконечную систему нелинейно связанных нелинейных осцилляторов на двумерной решетке с внешним потенциалом V (r) = K (1-cos r). Основной результат касается существования решений в виде гетероклиничних бегущих волн. С помощью метода критических точек и принципа концентрированной компактности получено достаточные условия существования таких решений.
Description
Differential equations
Keywords
discrete sine-Gordon equation, дискретне рівняння синус-Гордона, дискретное уравнение синус-Гордона, nonlinear oscillators, 2D-lattice, heteroclinic travelling waves, critical points, concentration-compactness principle, нелінійні осцилятори, двовимірна гратка, гетероклінічні біжучі хвилі, критичні точки, принцип концентрованої компактності, нелинейные осцилляторы, двумерная решетка, гетероклинические бегущие волны, критические точки, принцип концентрированной компактности
Citation
Bak S. The existence of heteroclinic traveling waves in the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice // Journal of mathematical physics, analysis, geometry. 2018. Vol. 14, № 1. – P. 16-26