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Abstract

We consider the initial value problem for discrete nonlinear wave equations. Under
natural assumptions, we prove results on global well-posedness in a wide class of
weighted? spaces. Admissible spaces include spaces power and exponential decaying
sequences.
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1 Introduction
In this paper we consider discrete nonlinear wave equations of the form

Gn = anOn+1+an—10n-1+bnan — fa(an), nNeZ, (1.1)
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where the coefficienta, and by, are sequences of real numbers, and the nonlineyity
is a sequence of function : R — R such thatf,(0) = 0. Here and in what follows
and " stand for the first and second time derivatives respectively. The unkggitynis a
sequence of real functions of real variabl&Ve study the initial value problem for equation
(1.1) with initial conditions

(0 =av, @(0)=a, nez, (1.2)
whereqﬁo) andqﬁl) are given real sequences.
In fact, (1.1) is an infinite sequence of ordinary differential equations. But a better point
of view is to consider equation (1.1) as an operator differential equation

6= Ag—B(0) (1.3)

in certain Hilbert, or even Banach, spageof sequences. Her& is the linear operator
defined by

(AQ)n = @nln+1+an-10n-1+bnlh, NEZ, (1.4)
andB is the nonlinear operator defined by
(B(@)n= fn(tn), neZ. (1.5)
Within this framework, initial conditions (1.2) become
a0) =9, q©0)=q¥, (1.6)

whereq© andq?) are given elements of the spdee

The simplest choice of such spaceEis= 12, the space of two-sided square summable
sequences. In this space equation (1.1) is Hamiltonian. In [4] (see also [9, Section 1.4])
the Hamiltonian structure, together with the classical existence and uniqueness theorem for
operator differential equations and a cut-off argument, is used to obtain rather general global
well-posedness of the initial value problemi fa We review those results in Section 2. The
aim of the present paper is to extend thavell-posedness results to weightéespaces and,
hence, provide a refined information about problem (1.1), (1.2). This is done in Section 4.
Similar idea has been used in [7] to study the discrete nonlineabiciger equation. In
Section 3 we discuss Weighté@}spaceslé and operators in such spaces. Section 5 is
devoted to simplest examples appearing in applications.

2 Hamiltonian Structure and |2-theory

Throughout the paper we impose the following assumptions.
(i) The coefficients, andb, are bounded real sequences

(i) The nonlinearityf, is a real valued function oR such thatf,(0) =0, and f, is locally
Lipschitz continuous uniformly with respectrie Z, i.e., for anyR > 0 there exists
a constanC(R) > 0 such that

[fn(re) — fn(r2)] <C(R)[ra—r2f, [rif,[rof <R, neZ.
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Sometimes we use the following stronger thiamassumption

(ii") Assumption(ii) is satisfied with the constaft independent oR, i.e., there exists a
constaniC > 0 such that

[fa(re) — f(r2) <Clri—r2|, neZ.

We denote by? the Hilbert space of two-sided square summable sequences. The norm
and inner product in this space are denoted byand(-, ), respectively. Occasionally, we
shall use more general spatsl < p < . The spacéP, 1 < p < o, consists of two-sided
real sequenceas= (up) such that the norm

lullie = 3 [unl?)P

is finite. The spacé&™ consists of all bounded sequences. The norm in this space is given
by
[[ulli= = sup|un|.
neZ
Assumption(i) guaranties that the operataris a bounded self-adjoint operatorlih
With this choice of the configuration space, the phase space of equation (£.£) fs and
the equation is a Hamiltonian system. The Hamiltonian is given by

H(G.p) = SlIPI2~ (Aaa)] + 3 Fola).

Nn=—o0

where Z

is the primitive function off,. The HamiltonianH is aC? functional on the phase space
and, hence a conserved quantitg, for any solution of equation (1.1) or, equivalently,
(1.3)

H(q,q) = const

Now we reproduce some results from [4] (see also [9, Section 1.4]). The first one is a
simple straightforward consequence of classical theorems on existence and uniqueness of
global solutions for operator differential equations (seg, [6, Chaptrer 6, Theorem 1.2]
and [10, Chapter 6, Theorems 1.2 and 1.4]). This result does not use the Hamiltonian
structure of equation (1.1).

Theorem 2.1. Under assumption§) and (ii’), for everyq® e 12 andq® ¢ I2 there exists
a unique solutiorg € C?(R, 1?) of problem (1.1), (1.2).

The proof of the next theorem makes use of Theorem 2.1, the Hamiltonian structure of
the equation and a cut-off argument.

Theorem 2.2. Assume(i) and (ii). Suppose that the operatdx is non-positive,i.e.,
(Ag,q) < 0 for all g€ 1?andFy(r) > 0for all r € R. Then problem (1.1), (1.2) has a
unique global solutiom € C3(R,12) for all © €12 andq® € I2.
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A completely different type of nonlinearities is considered in the following

Theorem 2.3. Assuméi), and letf,(r) = be a positively homogeneous function of degree
p > 1 such that f,(+1)| < C for some positive constafit Suppose that the operatéris
negative definitg,e.,

(Ag,q) < —aq]l%, (2.1)
wherea > 0. Then there existd > 0 such that for eveng® e 12 and q ¢ 12, with
19| < & and ||V < 5, problem (1.1), (1.2) has a unique solutigre C3(R,12). The
solutiong is a bounded function with valueslif

Let us point out that in [4] Theorem 2.3 is proven in the case wihén = dnr?. The
general case requires only minor changes in the proof.

Now we supplement Theorem 2.2 with the following result on the boundedness of the
solution.

Theorem 2.4. Assume thati) and (i) are satisfied, ané,(r) > Ofor all n€ Z andr € R.

(a) If the operatorA is non-positive andim;_, ;.. Fn(r) = 400 uniformly with respect
to n € Z, then the unique solution of problem (1.1), (1.2), wjth € 12 andq® €12, is a
bounded function o with values inl®. In addition, if, for somes > 2, there exisR > 0
andc > 0 such that

Fa(r) >c|r|®>, Vre[-RR],VneZ, (2.2)

then the solution is a bounded functionRrwith values inl*.

(b) If the operatorA is negative definite, then the unique solution of problem (1.1), (1.2),
with g e 12 andgY e 12, is a bounded function oR with values inl2.

Proof. (a) We have that

(o]

H(q(t),q(t)) = %HIQ(I)HZ—(AQ(t),Q(t))]+ S Fmn®)=H(@%.dY) (23

n=—oo

because the Hamiltoniad is a conserved quantity. Sin@eis non-positive whileF, is
non-negative, this implies that

Fa(th(t)) <H(@©,q®).

Therefore, there exists a const@nt 0 such thatgn(t)| <Cfor allt € R andn € Z because
Fn has infinite limit at infinity uniformly with respect to € Z.

Let us prove the second part of statement (a). The assumption on the lifjtadf
infinity implies that if inequality (2.2) holds for sonfe > 0, then it holds for everR > 0,
with the constant > 0 depending offiR. By the first part of the statement, there exRts 0
such that|q(t)|i» < Rfor allt € R. Hence, by (2.3) and (2.2),

c Y lam®P<H(E,q%)
N=—o
for all t € R which implies the required.
(b) In this case equation (2.3) and inequality (2.1) imply that
alla(t)|® < H(g,q)

for all t € R and the result follows.
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3 Weighted Spaces

Let © = (By) be a sequence of positive numbers (weight). The st@mnsists of all
two-sided sequences of real numbers such that the norm

lullo = (' u26n)/2
nez

is finite. This is a Hilbert space.
We always suppose that the weighsatisfies the following regularity assumption:

(iii ) the sequenc® is bounded below by a positive constant and there exists a constant
Co > O such that
en+1
=,

<Co
forall ne Z.

A weight satisfying assumptiofiii ) is calledregular.
Obviously, under this assumptid%] is densely and continuously embedded irftand

lul <Cllulle. ueld,

with someC > 0. Therefore, all these spaces are densely and continuously embedded into
the the spack’ of bounded sequences, wibpnorm. If8, = 1, thenl2 = 12.
From the point of view of functional analysis assumpt{on) is quite natural. It means
that the spacé is translation invariant. More precisely, [t andT_ be the operators of
right and left shifts, respectively, defined by

(TyW)n=wWp_1 and  (T-W)p = Wp1.

Lemma 3.1. Assumption(iii ) holds if and only if bothT, and T_ are linear bounded
operators inl3.

Proof. Indeed, we have that

Bni1
T w5 = ngzwﬁ—len = ngzwﬁen g: :
Hence,T, is bounded ir1§3 if and only if Bn.1/6y is bounded. SimilarlyT_ is bounded in
I% if and only if 8,_1/6, is bounded.
O

Note thatT, andT_ are mutually inverse operators. But let us point out that the trans-
lation invariance of the spa¢g does not mean that the n0|1h-1||% is translation invariant.

The most important examples of regular weights are

(a) power weight

Oh=(1+|n)°, b>0; (3.1)
(b) exponential weight

Bh =expaln|), a>0. (3.2)

More generally, the weigh;,, = exp(a|n|?), a > 0, satisfies assumptigiii ) if and only if
0<pB<1.
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4 Well-posedness in Weighted Spaces

We start with two simple lemmas.

Lemma 4.1. Assume(i). Let © be a regular weight. Then the operatérdefined by
equation (1.4) acts il% as a bounded linear operator.

Proof. The operatoA can be represented in the form
A=aoT_+T,oa+b,

wherea andb are the operators of multiplication by the sequen@g$ and (b,) respec-
tively, ando stands for the composition of operators. The operaforsT,, a andb are
bounded operators ilré) by Lemma 3.1 and assumpti@r) respectively. Hence, the result
follows.

O

Lemma 4.2. Under assumptiofii ), the nonlinear operatoB defined by equation (1.5) is
a locally Lipschitz continuous operator in the spdée i.e, for anyR > O there exists a
constantCr > 0 such that

1B(vV) = B(W)lljz < Crllv—w|i2 (4.1)

for all ve 13 andw € 12 such thad|v|||é <Rand ]WH% <R If assumptior{ii’) is satisfied,
then the operatoB is Lipschitz continuous,e., the constant in inequality (4.1) can be
chosen independent Bf

Proof. Straightforward.
O
Our key observation is the following

Theorem 4.3. Assumdi), (ii) and (iii ). Suppose thag € C?((—T,T);1?) is a solution of
problem (1.1), (1.2) witly© € 13 andg®™ € 13. Thenq € C?((—T,T);13).

Proof. Letqe C?((—T,T),12) be a solution of problem 1.1), (1.2) with® < I3 and
q¥ €12. Pickanyt € (0,T) and seR; = Sup.|_rq [[u(t)]. Let fy(r) = fu(r) if |r| < Re+1
and fo(r) = fo(Re +1) if [r| > R+ 1. Then on[—T1,T] the functionq(t) obviously solves
the equation

Gn = @n0nt+1+ an—10n—1+ bnOn — fn(Qn) , NELZL, (4.2)

with the same initial data.

Obviously, the functionsf,, satisfy assumptioriii’), and, by Lemma 4.2, the corre-
sponding operatdB is globally Lipschitz continuous in the spalge By Lemma 4.1, the
operatorA is a bounded linear operator Ié. By the classical result [6, Chaptrer 6, The-
orem 1.2] and [10, Chapter 6, Theorems 1.2 and 1.4], problem (4.2), (1.2) has a unique
solutiond € C?(R,13) C C?(R,12). By uniqueness for the initial value problem in the space
12, we have thafj = g on [-T,T]. Sincet € (0,T) is an arbitrary point, we obtain that
qeCA(-T.T).13).

]

Combining Theorem 4.3 with Theorems 2.1 — 2.3, we obtain the following corollaries.
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Corollary 4.4. Under assumptiong) and(ii’), for everyq©® <13 andq't) € 13 there exists
a unique solutiorg € C3(R,13) of problem (1.1), (1.2).

Corollary 4.5. Assume(i) and (ii). Suppose that the operatdx is non-positive,i.e.,
(Ag,q) < 0for all g< 1?2 andFy(r) >0 for all r € R. Then problem (1.1), (1.2) has a
unique global solutior € C2(R,13) for all ¢© €12 andq) € I3.

Corollary 4.6. Assum€(i), and letfy(r) be a positively homogeneous function of degree
p > 1 such that f,(+1)| < C for some positive consta@t Suppose that the operatéris
negative definitd,e.,

(Ag,q) < —al|q||?, (4.3)

wherea > 0. Then there existd > 0 such that for everg® € 13 and qV) € 13, with
19| < 8and|q¥ || < &, problem (1.1), (1.2) has a unique solutiqre C?(R,13).

Let us highlight that in Corollary 4.6 the smallness of the initial data is with respect to
thel?-norm, not in the spadg,.

5 Examples

Now we present some examples that often appear in applicationse(ge€l, 5, 11]). In
these exampleA stands for the one-dimensional Laplacian defined by

(AQ)n = Ont1+0On-1—20n.
The first example is the well-knowFrekel-Kontorova(FK) model. The equation reads
Gn = a(Aq)n — singn, (5.1)
wherea > 0. This is a straightforward discretization of thig-Gordon equation
Ut — @l + Sinu.

The last equation is a completely integrable system (@&g,[2]). At the same time its
discrete counterpart (5.1) ot completely integrable.

In the case of equation (5.1) the nonlinearity satisfiés Hence, Corollary 4.4 shows
that the initial value problem for (5.1) is globally well-posed in every spgeeth a regular
weight®.

Now consider the equation

tn = a(AQ)n — MO £ G- (5.2)

If the sign in front of the cubic nonlinearity is positive, this is tiepulsive discrete nonlin-
ear Klein-Gordon(DNKG_) equation in case whem? > 0, andrepulsive discrete nonlin-
ear wave(DNW_) equation whem? = 0. In case of negative sign, we obtain tigractive
discrete nonlinear Klein-GordofDNKG, ) equation (¥ > 0) and theattractive discrete
nonlinear wavgDNW., ) equation (¥ = 0) respectively.
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It is easy to verify that
(89,9) = Y (th—Gn-1)?
nezZ
and, hence, the operatiiis nonnegative. By Corollary 4.5, in the attractive case the initial
value problem for botibDNKG, andDNW.,_ is globally well-posed in all spacé% with
regular weight®. This is becaus€&,(r) = r%/4 > 0. On the other hand, in the repulsive
caseF,(r) = —r4/4 < 0. In case o DNKG_ the operato — n¥ is negative definite, and
Corollary 4.6 guaranties the existence of global solutiolgifor all initial data inl3 that
have sufficiently small?-norm, provided the weigh® is regular. The case dDNW_
remains open.
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