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EXISTENCE OF HETEROCLINIC TRAVELING WAVES IN A SYSTEM OF  
OSCILLATORS ON A TWO-DIMENSIONAL LATTICE 

S. M. Bak  UDC 517.97 

By using the method of critical points and the concentration-compactness principle, we study the prob-
lem of existence of heteroclinic traveling waves for a system of linearly coupled nonlinear oscillators on 
a two-dimensional lattice. 

Introduction 

Infinite-dimensional Hamiltonian systems are extensively used in nonlinear physics for the purposes of 
modeling of complex optical and quantum phenomena.  In recent years, much attention has been given to mod-
els discrete in the space variable, such as the Frenkel–Kontorova model, the Fermi–Pasta–Ulam systems, the 
discrete nonlinear Schrödinger equations, the discrete sine-Gordon equations, chains of oscillators, etc.  These 
systems are of interest from the viewpoint of numerous applications in physics [3, 5, 6]. 

An important class of solutions of these systems is formed by traveling waves.  A detailed presentation of 
the results obtained for traveling waves in Fermi–Pasta–Ulam chains can be found in works by Pankov (see, 
e.g., the survey [12]).  At the same time, there are only several works devoted to the investigation of traveling 
waves in the chains of oscillators.  Among these works, we can mention the work [9] the results of which were 
obtained by the methods of theory of bifurcations and the works [1, 4] in which the conditions of existence of 
periodic and solitary traveling waves were obtained by the method of critical points.  

In [13], periodic solutions for a system of oscillators located on two-dimensional lattices were studied, 
and in [2, 7, 8], traveling waves in these systems were investigated.  In particular, in [7], a system with odd   
2π-periodic nonlinearity was considered, and in [8], linear oscillators were investigated.  The conditions of ex-
istence of periodic and solitary traveling waves were obtained in [2]. 

In [10], heteroclinic traveling waves were studied for the discrete sine-Gordon equation with linear interac-
tion of the neighboring atoms in a one-dimensional lattice. 

In the present paper, by using the method of critical points and the concentration-compactness principle, 
we investigate the problem of existence of heteroclinic traveling waves for the discrete sine-Gordon equation on 
a two-dimensional lattice. 

The aim of the present paper is to establish conditions for the existence of heteroclinic traveling waves in 
a system of linearly coupled nonlinear oscillators with a potential   

 V (r) = K (1− cosr) 

in the two-dimensional integer lattice.  
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Statement of the Problem 

In the present paper, we study equations used for the description of the dynamics of an infinite system of 
linearly coupled nonlinear oscillators with a potential  V (r) = K (1− cosr)  located in a plane integer lattice.  Let  
qn,m (t )   be the generalized coordinate of the (n,m)th oscillator at time  t .  Assume that each oscillator linearly 
interacts with its four nearest neighbors.  The equations of motion of this system have the form 

 
  
qn,m (t ) = c0

2(qn+1,m (t )+ qn−1,m (t )+ qn,m+1(t )+ qn,m−1(t )  

    − 4qn,m (t ))− K sin(qn,m (t )), (n,m)∈Z2 . (1) 

Equation (1) is an infinite system of ordinary differential equations and a two-dimensional analog of the 
discrete sine-Gordon equation with the linear interaction of neighboring atoms.  It can also be represented in 
the form 

 
 
qn,m = c0

2 (Δq)n,m − K sin(qn,m ) , (2) 

where   

 (Δq)n,m = qn+1,m + qn−1,m + qn,m+1 + qn,m−1 − 4qn,m  

is a two-dimensional discrete Laplace operator. 
It is worth noting that, in this case, the potential  V (r) = K (1− cosr)  does not satisfy the condition  (h)  

from [1, 2] and, hence, it is impossible to obtain the results on the existence of periodic and solitary traveling 
waves in a similar way. 

For the profile of traveling wave  u(s),  where  s = ncosϕ + msinϕ − ct ,   s ∈R ,  Eq. (2) takes the form 

  c
2 ′′u (s) = c0

2(u(s + cosϕ)+ u(s − cosϕ)+ u(s + sinϕ)+ u(s − sinϕ)− 4u(s))− K sin(u(s)), (3) 

where  c   is the velocity of propagation of the wave.  Note that Eq. (3) contains solely the second power of the 
velocity  c .  Hence, if the function  u(s)  satisfies Eq. (3), then there exist two traveling waves with this profile 
and velocities  ± c . 

We consider the case of heteroclinic traveling waves.  To determine the profile of these waves, it suffices to 
find the solution of Eq. (3) satisfying the conditions:  

 lim
s→−∞

u(s) = −π, lim
s→+∞

u(s) = π . (4) 

In what follows, the solution of Eq. (3) is understood as a function  u(s)  from the class   C
2 (R)  satisfying 

Eq. (3) for all   s ∈R . 
For some values of the angle ϕ,  problem (3), (4) can be reduced to the one-dimensional case, i.e., to a chain 

of oscillators (one-dimensional lattice). 
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For  ϕ = πk
2 ,  k = 2n ,   n ∈Z ,  we get 

 cos πk2 = cosπn = (−1)n , 

 sin πk2 = sinπn = 0 . 

Then 

  c
2 ′′u (s) = c0

2(u(s + (−1)n )+ u(s − (−1)n )+ 2u(s)− 4u(s))− K sin(u(s))  

  = u(s +1)+ u(s −1)− 2u(s)+ c0u(s)− K sin(u(s)) . 

For  ϕ = πk
2 ,  k = 2n +1,   n ∈Z ,  we find 

 cos πk2 = cos π
2 (2n +1)

⎛
⎝⎜

⎞
⎠⎟ = 0 , 

 sin πk2 = sin π
2 (2n +1)

⎛
⎝⎜

⎞
⎠⎟ = (−1)n . 

Then 

  c
2 ′′u (s) = c0

2(u(s)+ u(s)+ u(s + (−1)n )+ u(s − (−1)n )− 4u(s))− K sin(u(s))  

   = c0
2(u(s +1)+ u(s −1)− 2u(s))− K sin(u(s)) . 

For  ϕ = π
4 + kπ

2 ,  k = 2n ,   n ∈Z ,  we obtain 

 cos π
4 + 2nπ

2
⎛
⎝⎜

⎞
⎠⎟ = cos π

4 + πn⎛
⎝⎜

⎞
⎠⎟ = (−1)n 2

2 , 

 sin π
4 + 2nπ

2
⎛
⎝⎜

⎞
⎠⎟ = sin π

4 + πn⎛
⎝⎜

⎞
⎠⎟ = (−1)n 2

2 . 

Then 

 c2 ′′u (s) = c0
2 2u s + (−1)n 2

2
⎛
⎝

⎞
⎠ + 2u s − (−1)n 2

2
⎛
⎝

⎞
⎠ − 4u(s)⎛

⎝⎜
⎞
⎠⎟ − K sin(u(s))  

  = c0
2 2u s + 2

2
⎛
⎝

⎞
⎠

⎛
⎝⎜ + 2u s − 2

2
⎛
⎝

⎞
⎠ − 4u(s)⎞⎠⎟ − K sin(u(s)) . 
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Finally, for  ϕ = π
4 + kπ

2 ,  k = 2n +1,   n ∈Z ,  we have 

 cos π
4 + πk

2
⎛
⎝⎜

⎞
⎠⎟ = cos π

4 + π
2 (2n +1)

⎛
⎝⎜

⎞
⎠⎟ = cos 3π

4 + πn⎛
⎝⎜

⎞
⎠⎟ = (−1)n−1 2

2 , 

 sin π
4 + πk

2
⎛
⎝⎜

⎞
⎠⎟ = sin π

4 + π
2 (2n +1)

⎛
⎝⎜

⎞
⎠⎟ = sin 3π

4 + πn⎛
⎝⎜

⎞
⎠⎟ = (−1)n 2

2 . 

Then 

 c2 ′′u (s) = c0
2 u s + (−1)n−1 2

2
⎛
⎝

⎞
⎠ + u s − (−1)n−1 2

2
⎛
⎝

⎞
⎠ + u s + (−1)n 2

2
⎛
⎝

⎞
⎠

⎛
⎝⎜  

   + u s − (−1)n 2
2

⎛
⎝

⎞
⎠ − 4u(s)⎞⎠⎟ − K sin(u(s))  

  = c0
2 2u s + 2

2
⎛
⎝

⎞
⎠ + 2u s − 2

2
⎛
⎝

⎞
⎠ − 4u(s)⎛

⎝⎜
⎞
⎠⎟ − K sin(u(s)) . 

We perform the change of variables   

 ψ(s) = u 2
2 s⎛

⎝
⎞
⎠       and      ′′ψ (s) = 1

2
′′u 2

2 s⎛
⎝

⎞
⎠ .   

Therefore, since 

 c2 ′′u 2
2 s⎛

⎝
⎞
⎠ = c0

2 2u 2
2 s + 2

2
⎛
⎝

⎞
⎠ + 2u 2

2 s − 2
2

⎛
⎝

⎞
⎠

⎛
⎝⎜ − 4u 2

2 s⎛
⎝

⎞
⎠
⎞
⎠⎟ − K sin u 2

2 s⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ , 

 c2 ′′u 2
2 s⎛

⎝
⎞
⎠ = c0

2 2u 2
2 (s +1)⎛

⎝
⎞
⎠ + 2u 2

2 (s −1)⎛
⎝

⎞
⎠

⎛
⎝⎜ − 4u 2

2 s⎛
⎝

⎞
⎠
⎞
⎠⎟ − K sin u 2

2 s⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟  

and 

 u 2
2 (s +1)⎛

⎝
⎞
⎠ = ψ(s +1), u 2

2 (s −1)⎛
⎝

⎞
⎠ = ψ(s −1) , 

after the change of variables, we arrive at the equation 

  2c
2 ′′ψ (s) = c0

2(2ψ(s +1)+ 2ψ(s −1)− 4ψ(s))− K sin(ψ(s)), 

 
 
c2 ′′ψ (s) = c0

2(ψ(s +1)+ ψ(s −1)− 2ψ(s))− K
2 sin(ψ(s)). 
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Thus, for the angles  ϕ = πk
2   and  ϕ = π

4 + kπ
2 ,   k ∈Z ,  we obtain the equation studied in [10], i.e., the case 

of one-dimensional lattice. 

Variational Statement of the Problem 

Equation (3) is associated with the functional  

 
 

J (u) := c2
2 ( ′u (s))2 −

c0
2

2 (u(s + cosϕ)− u(s))2
⎡

⎣
⎢

−∞

+∞

∫  

  
 
−
c0
2

2 (u(s + sinϕ)− u(s))2 + K(1+ cos(u(s)))
⎤

⎦
⎥ds , (5) 

defined in the Hilbert space   

   X := {u ∈H loc
1 (R): ′u ∈L2 (R)}    

with scalar product 

 
 
(u,v)X = u(0)v(0)+ ′u (τ) ′v (τ)dτ

R
∫ . 

Denote  
  
M−π,π = {u ∈X :u(−∞) = −π, u(+∞) = π}. 

Let    v0 :R → [−π; π]  be a monotone function in   C
∞ (R)   such that  v0 (s) = −π   for  s < −1  and  v0 (s) = π   

for  s > 1.  We now define a functional   Ψ :H 1(R)→ R   as 

 Ψ(v) := J (v0 + v). 

It is easy to see that  Ψ(v) < ∞   for all   v ∈H 1(R).  On the contrary, the minimum point  u   of the functional  J   
on  

 
M−π,π   can be written in the form  u = v0 + v   for some   v ∈H 1(R)  (see [10]).  Moreover, the function-

al  Ψ   is continuously differentiable on   H
1(R) . 

Lemma 1.  Let  u   be a critical point of the functional  Ψ   and let   

 
 
u = v0 + v ∈M−π,π ⊂ X . 

Then   u ∈C
2 (R)  is a solution of Eq. (3) satisfying conditions (4). 

Proof.  Let   v ∈H 1(R)  be a critical point of the functional  Ψ .  Then  ′Ψ (v), h = 0   for any   h ∈H 1(R): 

 0 = ′Ψ (v), h = ′J (u), h  
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= [c2 ′u (s) ′h (s)+ c0
2(u(s + cosϕ)

−∞

+∞

∫ + u(s − cosϕ)− 2u(s))h(s)  

    +c0
2(u(s + sinϕ)+ u(s − sinϕ)− 2u(s))h(s)− K sin(u(s))h(s)]ds . 

This means that  u   satisfies Eq. (3) in a sense of generalized functions (weak solution).  Recall that, ac-
cording to the theorem on embedding,    X ⊂ Cb (RR) ,  where    Cb (RR)   is the space of bounded and continuous 
functions on    RR .  Therefore,    u ∈Cb (RR) .  Thus, the right-hand side of Eq. (3) is a continuous function.  Hence, 

we conclude that  ′′u   is a continuous function and, thus,    u ∈C2 (RR)   is a solution of Eq. (3) in the ordinary 
sense. 

For the sake of simplicity, we denote 

 (Au)(s) := u(s + cosϕ)− u(s), (Bu)(s) := u(s + sinϕ)− u(s) . 

Then, according to Lemma 3.1 in [2], 

  A(s) L2 (R ) ≤ cosϕ ′u L2 (R ) , u ∈X , 

  B(s) L2 (R ) ≤ sinϕ ′u L2 (R ) , u ∈X , 

i.e., 

 Au(s) 2 ds
−∞

+∞

∫ ≤ cos2 ϕ ′u (s) 2 ds
−∞

+∞

∫ , u ∈X , 

   (6) 

 Bu(s) 2 ds
−∞

+∞

∫ ≤ sin2 ϕ ′u (s) 2 ds
−∞

+∞

∫ , u ∈X . 

This means that 

 
 

c2 − c0
2

2 ( ′u (s))2 + K(1+ cos(u(s)))
⎡

⎣
⎢

⎤

⎦
⎥ds

−∞

+∞

∫  

  
 

≤ J (u) ≤ c2
2 ( ′u (s))2 + K(1+ cos(u(s)))⎡

⎣⎢
⎤
⎦⎥
ds

−∞

+∞

∫ , u ∈X . 

Denote  

 
 

Iγ (u) := [γ ( ′u (s))2 + K(1+ cos(u(s)))]ds
−∞

+∞

∫ , 
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where  γ > 0 .  Thus, according to Lemma 3.1 in [10], the functional  Iγ   attains its minimum on  
 
M−π,π   and, 

moreover,   

 
 
min

u∈M−π ,π

Iγ (u) = ϑ := 2 γK 1+ cos(ξ) dξ
−π

π

∫ . (7) 

Furthermore, for the same  ϑ ,  we get 

 
 

inf
T >0

inf [γ ( ′u (s))2 + K(1+ cos(u(s)))]ds :
−T

T

∫
⎧
⎨
⎪

⎩⎪
  

  u ∈H 1(−T ,T ), u(−T ) = −π, u(T ) = π
⎫
⎬
⎪

⎭⎪
= ϑ . (8) 

As a direct corollary from Lemma 1, estimating the integral in (7), we obtain  

 
 
8 (c2 − c0

2 )K ≤ inf
u∈M−π ,π

J (u) ≤ 8c K . (9) 

Thus, it follows from inequalities (9) and  1+ cos(u) ≥ 0 that 

  
c2 − c0

2

2
′u0 L2 (R )

2 ≤ J (u0 ) ≤ 8c K . (10) 

By using inequalities (9), we can easily prove the following lemma (see [10]): 

Lemma 2.  Let  c2 > c0
2 .  Then the point  of global minimum u0   of the functional  J   on  

 
M−π,π   satisfies 

the inequality 

  u0 L∞ (R ) < (2k + 3)π, 

where   

 
 
k := max κ ∈N0 : (2κ +1) ≤ c2

c2 − c0
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. 

Main Result 

We now introduce the truncated version of the functional  J   for the parameter  T > 1  and   η∈R :  

 
 
JT u; η( ) := c2

2 [ ′u (s)]2 dsdτ
η−T +1/2+τ

η+T −1/2+τ

∫
−1/2

1/2

∫  
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  −
c0
2

2 u s + cosϕ + 1
2

⎛
⎝⎜

⎞
⎠⎟ − u s − 1

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
2
ds

η−T +1/2

η+T −1/2

∫  

  −
c0
2

2 u s + sinϕ + 1
2

⎛
⎝⎜

⎞
⎠⎟ − u s − 1

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
2
ds

η−T +1/2

η+T −1/2

∫  

  
 
+ K[1+ cos(u(s))]ds

η−T +1/2

η+T −1/2

∫ . 

In order to prove the main result, we need the discrete version of the concentration-compactness principle 
(see [10] and [11] for the continuous case). 

Lemma 3.  Let  c2 > c0
2   and let  

 
inf J (u) M−π ,π

≤ θ < ∞ .  Then any sequence 
 
(un )⊂ M−π,π   such that 

 lim
n→∞

J (un ) = θ , (11) 

contains a subsequence  (un )   (for which we preserve the same notation) satisfying one of the following three 
conditions: 

 (і) “concentration”: there exists a sequence   (ηn )⊂ R   such that, for any  ε > 0 ,  one can find  T0 > 0   
such that, for all  T > T0 , 

  J (un )− JT (un ; ηn ) < ε ∀n ∈N ; 

 (іі) “vanishing”: for all  T > 0 ,  the relation 

 
 
lim
n→∞

sup
η∈R

JT (un ; η) = 0  (12) 

is true;  

 (ііі) “splitting”: there exists  ε1 > 0  such that, for any 0 < ε < ε1, one can find sequences  fn , gn ∈X   
such that 

 un − ( fn + gn − π) ≤ ε , 

  J (un )− (J ( fn )+ J (gn )) ≤ ε , 

 
 
lim
n→∞

dist(supp( ′fn ), supp( ′gn )) = ∞ , 

 lim
n→∞

J ( fn ) = α, lim
n→∞

J (gn ) = β  

for some  0 < α ,  β < θ  (in the first inequality,  π   is required to guarantee that  J ( fn ) < ∞   and  J (gn ) < ∞ ). 
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The main result of the present paper can be formulated as follows: 

Theorem 1.  Let  c2 > 9
8 c0

2 .  Then the point of minimum   u0 ∈C
2 (R)   of the functional  J   exists on  

 
M−π,π ⊂ X . 

According to Lemma 1, this point is a solution of Eq. (3) satisfying conditions (4). 
The proof of this theorem is reduced to the exclusion of the last two cases (іі) and (ііі) of the concentration-

compactness principle.  
The following two lemmas exclude the possibility of vanishing and splitting for the minimizing sequence of 

the functional  J . 

Lemma 4.  Let  c2 > 9
8 c0

2  and let  
 
(un )⊂ M−π,π  be the minimizing sequence of the functional  J .  Then 

condition (іі) is not satisfied. 

Lemma 5.  Let  c2 > 9
8 c0

2  and let  
 
(un )⊂ M−π,π  be a minimizing sequence of the functional  J .  Then 

condition (ііі) is not satisfied. 

Lemmas 4 and 5 are proved in exactly the same way as Lemmas 5.1 and 5.2 in [10]. 

Proof of Theorem 1.  Inequalities (9) mean that the functional  J   is bounded from below on  X .  Let  

 
(un )⊂ M−π,π   be a minimizing sequence of the functional  J .  According to Lemma 3, for  

 
(un )⊂ M−π,π,  one 

of the three conditions (і)–(ііі) is satisfied.  It follows from Lemmas 4 and 5 that condition (і) is satisfied.  Thus, 
for fixed  ε > 0 ,  we can choose a sequence   (ηn )⊂ R   and  T0 > 0   such that 

  J (un )− JT (un ; ηn ) < ε ∀n ∈N . 

We denote  vn (s) := un (ηn + s).  The sequence  (vn )   is bounded in the space  X   because   

  
′vn L2 (R ) =  

 
′un L2 (R ) ≤

2
c2 − c0

2 J (un )   

and  v(0) < 3π   according to estimate (10) and Lemma 2.  Since  X  is a Hilbert space, there exists a weakly 
convergent subsequence [for which we preserve the same notation  (vn )].  On the segment   [−T0 , T0 ],  the weak 
convergence of  (vn )   is equivalent to the strong convergence in  L2 (−T0 ,T0 )  and   C

0[−T0 , T0 ]  to a certain 
limit  u .  Thus, for all  n > N   with sufficiently large  N ,  we find  

 
 

[(Avn (s))
2 − (Aun (s))

2 ]ds
−T0

T0−1

∫ < ε , 

 
 

[(Bvn (s))
2 − (Bun (s))

2 ]ds
−T0

T0−1

∫ < ε  
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and 

 
 

[cos(vn (s))− cos(un (s))]ds
−T0

T0

∫ < ε . 

Since the weak convergence means that   

 
 
′u L2 (−T0 ,T0 )
2 ≤ lim

n→∞
inf
n∈N

′vn L2 (−T0 ,T0 )
2 ,  

we conclude that   

 JT0 (u) ≤  
 
lim
n→∞

inf
n∈N

JT0 (vn ; 0). 

We choose an arbitrary monotone sequence  Tk →∞   with   k ∈N0   and assume that  u   is already defined 
as the uniform limit of the sequence  (vn )  on the segment   [−Tk , Tk ].  Since  (vn )  is still bounded in  X ,  we can 
again choose a subsequence [for which we preserve the same notation  (vn )]  uniformly convergent in  

 C
0[−Tk+1,Tk+1 ]  to a certain limit   !u ,  which coincides with  u   on   [−Tk , Tk ]  (by construction). 

Hence, the function  u   on   R   satisfies conditions (4) also with the constant  C = C(c, c0 , K ) 

 
 
J (u) = lim

T→∞
JT (u, 0) ≤ lim

T→∞
lim
n→∞

inf
n∈N

JT (vn , 0) 

  
 
≤ lim

T→∞
lim
n→∞

inf
n∈N

J (vn )+Cε ≤ lim
n→∞

J (un )+Cε  

and, in particular,   ′u ∈L2 (R) .  Thus,  
 
u ∈M−π,π .  In view of the arbitrariness of  ε ,  it follows from the last 

inequality that 

 J (u) ≤ lim
n→∞

J (un ). 

This means that  u   is the point of minimum for the functional  J   on  
 
M−π,π . 

Thus, we have established the conditions for the existence of heteroclinic traveling waves in a system of 
linearly coupled nonlinear oscillators with potential  V (r) =K (1− cosr)   on the two-dimensional lattice.  In the 
nearest future, we plan to obtain the conditions for the existence of homoclinic and periodic traveling waves in 
systems of this kind. 
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