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Abstract

We consider the initial value problem for discrete nonlinear wave equations. Under
natural assumptions, we prove results on global well-posedness in a wide class of
weightedl2 spaces. Admissible spaces include spaces power and exponential decaying
sequences.
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1 Introduction

In this paper we consider discrete nonlinear wave equations of the form

q̈n = anqn+1 +an−1qn−1 +bnqn− fn(qn) , n∈ Z , (1.1)
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where the coefficientsan andbn are sequences of real numbers, and the nonlinearityfn
is a sequence of functionsfn : R→ R such thatfn(0) = 0. Here and in what followṡ
and ¨ stand for the first and second time derivatives respectively. The unknownqn(t) is a
sequence of real functions of real variablet. We study the initial value problem for equation
(1.1) with initial conditions

qn(0) = q(0)
n , q̇n(0) = q(1)

n , n∈ Z , (1.2)

whereq(0)
n andq(1)

n are given real sequences.
In fact, (1.1) is an infinite sequence of ordinary differential equations. But a better point

of view is to consider equation (1.1) as an operator differential equation

q̈ = Aq−B(q) (1.3)

in certain Hilbert, or even Banach, spaceE of sequences. HereA is the linear operator
defined by

(Aq)n = anqn+1 +an−1qn−1 +bnqn , n∈ Z , (1.4)

andB is the nonlinear operator defined by

(B(q))n = fn(qn) , n∈ Z . (1.5)

Within this framework, initial conditions (1.2) become

q(0) = q(0) , q̇(0) = q(1) , (1.6)

whereq(0) andq(1) are given elements of the spaceE.
The simplest choice of such space isE = l2, the space of two-sided square summable

sequences. In this space equation (1.1) is Hamiltonian. In [4] (see also [9, Section 1.4])
the Hamiltonian structure, together with the classical existence and uniqueness theorem for
operator differential equations and a cut-off argument, is used to obtain rather general global
well-posedness of the initial value problem inl2. We review those results in Section 2. The
aim of the present paper is to extend thel2-well-posedness results to weightedl2-spaces and,
hence, provide a refined information about problem (1.1), (1.2). This is done in Section 4.
Similar idea has been used in [7] to study the discrete nonlinear Schrödinger equation. In
Section 3 we discuss weightedl2-spacesl2

Θ and operators in such spaces. Section 5 is
devoted to simplest examples appearing in applications.

2 Hamiltonian Structure and l2-theory

Throughout the paper we impose the following assumptions.

(i) The coefficientsan andbn are bounded real sequences.

(ii) The nonlinearityfn is a real valued function onR such thatfn(0) = 0, and fn is locally
Lipschitz continuous uniformly with respect ton∈ Z, i.e., for anyR> 0 there exists
a constantC(R) > 0 such that

| fn(r1)− fn(r2)| ≤C(R)|r1− r2| , |r1|, |r2| ≤ R, n∈ Z .
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Sometimes we use the following stronger than(ii) assumption

(ii ′) Assumption(ii) is satisfied with the constantC independent ofR, i.e., there exists a
constantC > 0 such that

| fn(r1)− fn(r2)| ≤C|r1− r2| , n∈ Z .

We denote byl2 the Hilbert space of two-sided square summable sequences. The norm
and inner product in this space are denoted by‖ ·‖ and(·, ·), respectively. Occasionally, we
shall use more general spacesl p, 1≤ p≤∞. The spacel p, 1≤ p< ∞, consists of two-sided
real sequencesu = (un) such that the norm

‖u‖l p = (∑
n∈Z

|un|p)1/p

is finite. The spacel∞ consists of all bounded sequences. The norm in this space is given
by

‖u‖l∞ = sup
n∈Z

|un| .

Assumption(i) guaranties that the operatorA is a bounded self-adjoint operator inl2.
With this choice of the configuration space, the phase space of equation (1.1) isl2× l2, and
the equation is a Hamiltonian system. The Hamiltonian is given by

H(q, p) =
1
2
[‖p‖2− (Aq,q)]+

∞

∑
n=−∞

Fn(qn) ,

where
Fn(r) =

Z r

0
fn(s)ds

is the primitive function offn. The HamiltonianH is aC1 functional on the phase space
and, hence a conserved quantity,i.e., for any solution of equation (1.1) or, equivalently,
(1.3)

H(q, q̇) = const.

Now we reproduce some results from [4] (see also [9, Section 1.4]). The first one is a
simple straightforward consequence of classical theorems on existence and uniqueness of
global solutions for operator differential equations (see,e.g., [6, Chaptrer 6, Theorem 1.2]
and [10, Chapter 6, Theorems 1.2 and 1.4]). This result does not use the Hamiltonian
structure of equation (1.1).

Theorem 2.1. Under assumptions(i) and(ii ′), for everyq(0) ∈ l2 andq(1) ∈ l2 there exists
a unique solutionq∈C2(R, l2) of problem (1.1), (1.2).

The proof of the next theorem makes use of Theorem 2.1, the Hamiltonian structure of
the equation and a cut-off argument.

Theorem 2.2. Assume(i) and (ii). Suppose that the operatorA is non-positive,i.e.,
(Aq,q) ≤ 0 for all q ∈ l2 and Fn(r) ≥ 0 for all r ∈ R. Then problem (1.1), (1.2) has a
unique global solutionq∈C2(R, l2) for all q(0) ∈ l2 andq(1) ∈ l2.
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A completely different type of nonlinearities is considered in the following

Theorem 2.3. Assume(i), and let fn(r) = be a positively homogeneous function of degree
p > 1 such that| fn(±1)| ≤C for some positive constantC. Suppose that the operatorA is
negative definite,i.e.,

(Aq,q)≤−α‖q‖2 , (2.1)

whereα > 0. Then there existsδ > 0 such that for everyq(0) ∈ l2 and q(1) ∈ l2, with
‖q(0)‖ < δ and‖q(1)‖ < δ, problem (1.1), (1.2) has a unique solutionq ∈C2(R, l2). The
solutionq is a bounded function with values inl2.

Let us point out that in [4] Theorem 2.3 is proven in the case whenfn(r) = dnr2. The
general case requires only minor changes in the proof.

Now we supplement Theorem 2.2 with the following result on the boundedness of the
solution.

Theorem 2.4. Assume that(i) and(ii) are satisfied, andFn(r)≥ 0 for all n∈ Z andr ∈R.
(a) If the operatorA is non-positive andlimr→±∞ Fn(r) = +∞ uniformly with respect

to n∈ Z, then the unique solution of problem (1.1), (1.2), withq(0) ∈ l2 andq(1) ∈ l2, is a
bounded function onR with values inl∞. In addition, if, for somes≥ 2, there existR> 0
andc > 0 such that

Fn(r)≥ c|r|s, ∀r ∈ [−R,R] ,∀n∈ Z , (2.2)

then the solution is a bounded function onR with values inls.
(b) If the operatorA is negative definite, then the unique solution of problem (1.1), (1.2),

with q(0) ∈ l2 andq(1) ∈ l2, is a bounded function onR with values inl2.

Proof. (a) We have that

H(q(t), q̇(t)) =
1
2
[‖q̇(t)‖2− (Aq(t),q(t))]+

∞

∑
n=−∞

Fn(qn(t)) = H(q(0),q(1)) (2.3)

because the HamiltonianH is a conserved quantity. SinceA is non-positive whileFn is
non-negative, this implies that

Fn(qn(t))≤ H(q(0),q(1)) .

Therefore, there exists a constantC > 0 such that|qn(t)| ≤C for all t ∈R andn∈Z because
Fn has infinite limit at infinity uniformly with respect ton∈ Z.

Let us prove the second part of statement (a). The assumption on the limit ofFn at
infinity implies that if inequality (2.2) holds for someR> 0, then it holds for everyR> 0,
with the constantc> 0 depending onR. By the first part of the statement, there existsR> 0
such that‖q(t)‖l∞ ≤ R for all t ∈ R. Hence, by (2.3) and (2.2),

c
∞

∑
n=−∞

|qn(t)|s≤ H(q(0),q(1))

for all t ∈ R which implies the required.
(b) In this case equation (2.3) and inequality (2.1) imply that

α‖q(t)‖2 ≤ H(q(0),q(1))

for all t ∈ R and the result follows.
¤
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3 Weighted Spaces

Let Θ = (θn) be a sequence of positive numbers (weight). The spacel2
Θ consists of all

two-sided sequences of real numbers such that the norm

‖u‖Θ = (∑
n∈Z

u2
nθn)1/2

is finite. This is a Hilbert space.
We always suppose that the weightΘ satisfies the following regularity assumption:

(iii ) the sequenceΘ is bounded below by a positive constant and there exists a constant
c0 > 0 such that

c−1
0 ≤ θn+1

θn
≤ c0

for all n∈ Z.

A weight satisfying assumption(iii ) is calledregular.
Obviously, under this assumptionl2

Θ is densely and continuously embedded intol2 and

‖u‖ ≤C‖u‖Θ , u∈ l2
Θ ,

with someC > 0. Therefore, all these spaces are densely and continuously embedded into
the the spacel∞ of bounded sequences, withsup-norm. If θn ≡ 1, thenl2

Θ = l2.
From the point of view of functional analysis assumption(iii ) is quite natural. It means

that the spacel2
Θ is translation invariant. More precisely, letT+ andT− be the operators of

right and left shifts, respectively, defined by

(T+w)n = wn−1 and (T−w)n = wn+1 .

Lemma 3.1. Assumption(iii ) holds if and only if bothT+ and T− are linear bounded
operators inl2

Θ.

Proof. Indeed, we have that

‖T+w‖2
Θ = ∑

n∈Z
w2

n−1θn = ∑
n∈Z

w2
nθn

θn+1

θn
.

Hence,T+ is bounded inl2
Θ if and only if θn+1/θn is bounded. Similarly,T− is bounded in

l2
Θ if and only if θn−1/θn is bounded.

¤
Note thatT+ andT− are mutually inverse operators. But let us point out that the trans-

lation invariance of the spacel2
Θ does not mean that the norm‖ · ‖l2Θ

is translation invariant.
The most important examples of regular weights are

(a) power weight
θn = (1+ |n|)b , b > 0; (3.1)

(b) exponential weight
θn = exp(α|n|) , α > 0. (3.2)

More generally, the weightθn = exp(α|n|β), α > 0, satisfies assumption(iii ) if and only if
0 < β≤ 1.
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4 Well-posedness in Weighted Spaces

We start with two simple lemmas.

Lemma 4.1. Assume(i). Let Θ be a regular weight. Then the operatorA defined by
equation (1.4) acts inl2

Θ as a bounded linear operator.

Proof. The operatorA can be represented in the form

A = a◦T−+T+ ◦a+b,

wherea andb are the operators of multiplication by the sequences(an) and(bn) respec-
tively, and◦ stands for the composition of operators. The operatorsT−, T+, a andb are
bounded operators inl2

Θ by Lemma 3.1 and assumption(i) respectively. Hence, the result
follows.

¤

Lemma 4.2. Under assumption(ii), the nonlinear operatorB defined by equation (1.5) is
a locally Lipschitz continuous operator in the spacel2

Θ, i.e., for anyR > 0 there exists a
constantCR > 0 such that

‖B(v)−B(w)‖l2Θ
≤CR‖v−w‖l2Θ

(4.1)

for all v∈ l2
Θ andw∈ l2

Θ such that‖v‖l2Θ
≤Rand‖w‖l2Θ

≤R. If assumption(ii ′) is satisfied,
then the operatorB is Lipschitz continuous,i.e., the constant in inequality (4.1) can be
chosen independent ofR.

Proof. Straightforward.
¤

Our key observation is the following

Theorem 4.3. Assume(i), (ii) and(iii ). Suppose thatq∈C2((−T,T); l2) is a solution of
problem (1.1), (1.2) withq(0) ∈ l2

Θ andq(1) ∈ l2
Θ. Thenq∈C2((−T,T); l2

Θ).

Proof. Let q∈C2((−T,T), l2) be a solution of problem 1.1), (1.2) withq(0) ∈ l2
Θ and

q(1) ∈ l2
Θ. Pick anyτ∈ (0,T) and setRτ = supt∈[−τ,τ] ‖u(t)‖. Let f̃n(r) = fn(r) if |r| ≤Rτ +1

and f̃n(r) = fn(Rτ + 1) if |r| > Rτ + 1. Then on[−τ,τ] the functionq(t) obviously solves
the equation

q̈n = anqn+1 +an−1qn−1 +bnqn− f̃n(qn) , n∈ Z , (4.2)

with the same initial data.
Obviously, the functionsf̃n satisfy assumption(ii ′), and, by Lemma 4.2, the corre-

sponding operator̃B is globally Lipschitz continuous in the spacel2
Θ. By Lemma 4.1, the

operatorA is a bounded linear operator inl2
Θ. By the classical result [6, Chaptrer 6, The-

orem 1.2] and [10, Chapter 6, Theorems 1.2 and 1.4], problem (4.2), (1.2) has a unique
solutionq̃∈C2(R, l2

Θ)⊂C2(R, l2). By uniqueness for the initial value problem in the space
l2, we have that̃q = q on [−τ,τ]. Sinceτ ∈ (0,T) is an arbitrary point, we obtain that
q∈C2((−T,T), l2

Θ).
¤

Combining Theorem 4.3 with Theorems 2.1 – 2.3, we obtain the following corollaries.
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Corollary 4.4. Under assumptions(i) and(ii ′), for everyq(0) ∈ l2
Θ andq(1) ∈ l2

Θ there exists
a unique solutionq∈C2(R, l2

Θ) of problem (1.1), (1.2).

Corollary 4.5. Assume(i) and (ii). Suppose that the operatorA is non-positive,i.e.,
(Aq,q) ≤ 0 for all q ∈ l2 and Fn(r) ≥ 0 for all r ∈ R. Then problem (1.1), (1.2) has a
unique global solutionq∈C2(R, l2

Θ) for all q(0) ∈ l2
Θ andq(1) ∈ l2

Θ.

Corollary 4.6. Assume(i), and let fn(r) be a positively homogeneous function of degree
p > 1 such that| fn(±1)| ≤C for some positive constantC. Suppose that the operatorA is
negative definite,i.e.,

(Aq,q)≤−α‖q‖2 , (4.3)

whereα > 0. Then there existsδ > 0 such that for everyq(0) ∈ l2
Θ and q(1) ∈ l2

Θ, with
‖q(0)‖< δ and‖q(1)‖< δ, problem (1.1), (1.2) has a unique solutionq∈C2(R, l2

Θ).

Let us highlight that in Corollary 4.6 the smallness of the initial data is with respect to
the l2-norm, not in the spacel2

Θ.

5 Examples

Now we present some examples that often appear in applications (see,e.g., [1, 5, 11]). In
these examples∆ stands for the one-dimensional Laplacian defined by

(∆q)n = qn+1 +qn−1−2qn .

The first example is the well-knownFrekel-Kontorova(FK) model. The equation reads

q̈n = a(∆q)n−sinqn , (5.1)

wherea > 0. This is a straightforward discretization of thesin-Gordon equation

utt −auxx+sinu.

The last equation is a completely integrable system (see,e.g., [2]). At the same time its
discrete counterpart (5.1) isnotcompletely integrable.

In the case of equation (5.1) the nonlinearity satisfies(ii ′). Hence, Corollary 4.4 shows
that the initial value problem for (5.1) is globally well-posed in every spacel2

Θ with a regular
weightΘ.

Now consider the equation

q̈n = a(∆q)n−m2qn±q3
n . (5.2)

If the sign in front of the cubic nonlinearity is positive, this is therepulsive discrete nonlin-
ear Klein-Gordon(DNKG−) equation in case whenm2 > 0, andrepulsive discrete nonlin-
ear wave(DNW−) equation whenm2 = 0. In case of negative sign, we obtain theattractive
discrete nonlinear Klein-Gordon(DNKG+) equation (m2 > 0) and theattractive discrete
nonlinear wave(DNW+) equation (m2 = 0) respectively.
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It is easy to verify that
(∆q,q) = ∑

n∈Z
(qn−qn−1)2

and, hence, the operator∆ is nonnegative. By Corollary 4.5, in the attractive case the initial
value problem for bothDNKG+ andDNW+ is globally well-posed in all spacesl2

Θ with
regular weightΘ. This is becauseFn(r) = r4/4≥ 0. On the other hand, in the repulsive
caseFn(r) = −r4/4≤ 0. In case ofDNKG− the operator∆−m2 is negative definite, and
Corollary 4.6 guaranties the existence of global solution inl2

Θ for all initial data inl2
Θ that

have sufficiently smalll2-norm, provided the weightΘ is regular. The case ofDNW−
remains open.
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[7] G. M. N’Guéŕekata and A. Pankov, Global well-posedness for discrete nonlinear
Schr̈odinger equation.Appl. Anal., to appear.

[8] G. Iooss and K. Kirchg̈assner, Travelling waves in a chain of coupled oscillators.
Commun. Math. Phys.211(2000), 439–464.

[9] A. Pankov,Travelling waves and periodic oscillations in Fermi-Pasta-Ulam lattices,
Imperial College Press, London 2005.

[10] A. Pazy,Semigroups of linear operators and applications to partial differential equa-
tions, Springer, New York 1983.

[11] L. Vazquez, L. Streit and V. M. Perez-Garcia (eds),Nonlinear Klein-Gorgon and
Schr̈odinger systems, World Sci., River Edge, NJ, 1996.


